Tag Archives: cree led

LED Aquarium Lights, Lighting; How they work, DIY

Further Revised 8/16/16

Sections Include:


*LED [light-emitting diode] Overview:

This aquarium light type uses semiconductor technology as its light source. A light emitting electrical diode. This is a different technology then fluorescent lighting, and how it’s sciences are used are different. Since this lighting type is different in the sense it can pinpoint intensity of light, down to the specific nanometer of energy, this tech has been used to really help understand the photosynthetic process and how certain light (energy) is used by the plant & coral.

For aquarium use, the development of LEDs since 2007 for both reef and freshwater planted, was trying to get a high amount of energy (carried by Photons) into correct wave lengths of spectrum used in aquarium photosynthesis and ultimately being the most usable light of a emitter [PUR = Photosynthetically Usable Radiation] for whatever photosynthetic organism was being grown.

While nothing about photosynthesis is required to know in order to grow plants, it does help us understand how effectively we are growing and does give an idea of the type of color and energy we can expect from our light source.

For the LED fixture as a whole, essentially, the best LED fixtures are NOT aquarium lights in the traditional sense, even the emitters are not a “bulb” as many people think. They are a computer chip emitting frequencies of waves, which happen to end up being visual light we see.

High end LED fixtures use complex circuitry to precisely spread electoral voltage over drivers, which control each emitter. LED lights properly driven will give precise energy quality and not lose or shift energy (spectrum) unlike ALL fluorescent lights.

For other LED fixtures, this statement cannot be made, because emitters are daisy chained together in a shotgun approach to provide output light. These light source are now commonly dimmed, which we will find out if not done properly, it will not be the best for long term use.


For those who are unsure as to what a LED light can do for their reef aquarium or think these are still untested even as of 2016, here’s an excellent newer website documenting the LED Light research at Saint Mary’s College of Maryland by Dr. Walter Hatch, showing better growth, spawning, and more with highly tuned LEDs.
THIS IS AN IMPORTANT READ!

Sustainable Reef- Optimal Growth at Low Energy Consumption
St Mary's Marine Biology Experiments with LED Lighting
St Mary’s Marine Biology Experiments with LED Lighting


The picture above is of an office with many reef aquariums (which includes stony corals, SPS and LPS) set up with low input energy/high output Industry leading AquaRay LED lighting systems, please click to enlarge

Please reference this forum post for more about this picture:
http://indoreefclub.com/forum/index.php?topic=862.0

Product Resource: Industry Leading AquaRay LED Lights, since 2007
Other top notch LED lights include Kessil, EcoTech, Aqua Illumination (such as Hydra), & Zetlight (sold under the names Maxspect & iLumenAir)


Please read ALL my cited references and consider reading my other articles about Aquarium Lighting. Together, they provide some foundation to the hows and whys of this article.

At the end of this article/review, we should be able to understand these light measures of LED and which ones are best used for optimal light produced by our LED fixtures based on what we need and can afford. I will will start with the most useful measure with todays science, and work backwards.


IMPORTANT:

In my conversations with aquarium professionals, as with ANY lighting or change of lighting; results should be seen WITHIN 6 weeks, whether positive or negative!
Regardless of the lighting type, if the corals or freshwater plants take a turn for the worse in say 3 months after a lighting change, likely there are other lighting parameter issues at play [assuming chemistry is constant]!

Both corals or plants will need time to adjust to their new lighting. Depending if the adjustment is to higher or lower light, both will “melt” back and regrow to the new lighting. It’s recommended to start slowly and work up.


Emitter History:
Based on research and interviews, beginning in 2007 [and continuing to improve as of 2016], high end LED aquarium lighting started to become a viable replacement for metal halide in reef tanks under 30 inches and surpass most T5 aquarium lighting as soft and hard corals, as well as planted freshwater aquariums, are able to thrive under the newer exacting high output LED’s.

This is not only due to the photon energy (light) output, but also due to the amount (quantity output) of specific energy frequency of light (photons) LEDs are able to provide for input energy used without the light energy restrike ALL fluorescent lights have to deal with.

LEDs have both quality and quantity of light for specific applications we want to use them for.

Emitters output different frequencies (some visual to the eye) by utilizing certain compounds, which convert input energy into photons (light), which are delivered to the plant.

Some frequencies are more efficiently used by the plant for photosynthesis over others. Photons are the carriers of these frequencies and these frequencies can be more intense than others with more energize movement. Certain frequencies specifically (and combined, working together synenergetically) are used to provide essential light energy required for certain applications.

For example, how emitter diodes are created can be complex and precision equipment has to be used to compile the light diode. A substrate material is used and layered with other materials, which takes input energy and converts it into light photons, and delivers the output energy through a len.
Infrared emitters use Gallium arsenide (GaAs) and/or Aluminium gallium arsenide (AlGaAs) for its semiconductor material, while Blue (460 nm visually) uses Zinc selenide (ZnSe), Indium gallium nitride (InGaN), Silicon carbide (SiC), and/or Silicon (Si).
Brief overview of aquarium LEDs construction: How LEDs work.

plant growth with three different light sources, driven at lower and higher PAR values
The picture to the right makes a real world application point as to the real outcome of light wave lengths.
This picture displays plant growth with three different light sources, driven at lower and higher PAR values.
It is clear from the graph that the green is 50% less efficient than the red and a whopping 80% less efficient than the blue.

Reference:
PUR, PAS, PAR in Aquarium Reef/Planted Lighting; LED Wavelengths

Having certain frequencies dialed in intensity [quality and quantity] are important.

One way to think of the high end LED fixtures, not other LEDs, which have more in common with an LED flashlight (Finnex, Fluval, Taotronics…), these are computers, which emit frequency wavelength needed for tank inhabitants.

[See Proper LED Ventilation later in this article].

Above/left is a hard coral growing out under “quality” LED Lighting

There are different emitter qualities (mix of frequencies) put into lighting fixtures, which we will address. They’re name brand emitters, which are known by many people, because their name is backed up. Phillips, Cree, Osram, Bridgelux are the most common names. It’s typical for larger name companies to have more funding behind their lighting research as well.

Cheaper fixtures will use “no-name” or “binned” emitters. This can be important to know for a couple reasons.
One, there many ways to create a frequency with a LED [via emitter bins]. Different emitters can have the same rating in numbers/specifications, but not have the same quality and quantity of frequency wavelength to create the overall visual/non visual spectrum.
Take a 6500K from Cree and it not going be the same frequencies or appear visually as the same as a 6500K from Phillips or Bridgelux. There’s differences in straight 6500K emitters and differences in the overall combination of frequencies/color to make an overall specific color rating. As well, many if not most LED fixture use a combination of binned emitters to reach a certain Kelvin rating such as 6500K or 20000K, often using warm white or cool white emitters with lower PUR in the mix along with blues, reds, & greens.

This comes down to cost/budget-supply/demand (marketing & research), of how fixtures are put together. No named emitters are a flag for how quality a fixture will be and what you should expect to pay for it. Different emitter companies will have standards (some patented/specific application agreements or licensing) of how they design their frequencies and also will have different color selections.

A very highly recommended emitter bin to consider is the TMC AquaRay Patented emitters, both Marine and Freshwater. High Output with less input energy. Highest grade LEDs for the cost.

Resource:
American Aquarium- AquaRay

LED Light Comparisons/Tests from 2008

A controlled test using terrestrial plants had some interesting results for which we can draw some conclusions for planted freshwater and reef aquarium LED light use.

For this test, full spectrum LED Grow Lights similar, but with a lower output to the newest version of the TMC GroBeam 6500K Daylight or 6500K TMC Mini 400 were used.

In this test, the LED Lights were PROVEN to substantially surpass Metal Halide Lights in growth. While this test is now somewhat dated, it is this test, which convinced the industry, that LEDs have “now finally arrived” as a useful light for planted freshwater and reef saltwater aquariums.

The raw data based on this study with plants that a 12 Watt LED can at least replace a 100 watt MH of equal Kelvin ratings in aquarium applications. High output 30 Watt LED should easily replace one 175-250 Watt Metal Halide of similar rating for marine applications up to 24-30 inches in water depth.
By this time, many planted freshwater applications were already having success with lamps, such as the 6500K PAR 38 lamps. This needs to not be confused with the low output 3000K PAR 30 sold at places like Home Depot as this simple example makes a valuable point.
See: 6500K PAR 38 Planted Aquarium Lights


Useful Light Make Up (PUR):

Photosynthetically Useful Radiation– (PUR)

While not readily measurable in a numbers sort of way, this is an aspect of aquarium lighting that many misunderstand, over complicate, or simply and erroneously trash despite strong evidences of its importance.

Here is a quote from another article dealing with this term:
“Another description could be: “Quality of light per application” compared to PAR (Photosynthetically Active Radiation) being the “quantity of light energy” used by photosynthetic life.
I think many in the hobby get “hung up” on this term, as it is a “fuzzy term (which I would partly agree since each plant, coral, etc, can be unique), but there are many aspects of science such as we have moved through the discovery of subatomic particles that are based on subatomic behavior, but not as easily measurable such as PAR is.
As well, we also know based on aquarium lighting history that we simply cannot dismiss the evidence supporting PUR as a fact either.”

Reference:
PUR/PAS vs PAR in Aquarium Lighting

What is important to grasp is that while many will only concern themselves with PAR and state that say an AI Hydra HD Twenty-Six [at 90 watts] has more energy for ones plants or corals than say an AquaRay NP 2000 Reef White or GroBeam 1500 [at 30 watts each], this is correct, but misses the point that the later is more efficient watt per watt due to higher PUR values because of the emitters or combinations there of used!!

I know of many examples based on professionals consulted for this article that bear this out, not just hear-say from forums, YouTube comments or other social media.
Using the AI Hydra, which is an excellent high power LED that is frankly second to none when it comes to light output per square inch of light fixture, however when plant and coral growth is noted watt per watt of input energy, these same aquarium design professionals have noted that the AquaRay exceeds the AI Hydra.

Does this mean your AI Hydra is inferior? This is simply one aspect of where PUR might come into play.
No, lets just compare apples to apples. If you want a very high powered LED that really concentrates light over your reef tank [or planted] the AI Hydra Twenty-six or Fifty-two HD might be for you, however for the majority of applications such as those installed by an aquarium professional in his aquarium design & maintenance business, he has found that this much power is not generally needed and efficiency along with the 5 year versus 1 year warranty is what is most important.

Resources for both of these excellent LED Lights:
TMC Premium HO PUR AquaRay- Salt & Freshwater
Aqua Illuminations Hydra Twenty Six HD (Hyper Drive)- Salt & Freshwater

Photosynthetic Action Spectrum– (PAS) An action spectrum is the rate of a physiological activity plotted against wavelength of light, It shows which wavelength of light is most effectively used in a specific chemical reaction (Plant & Zooxanthellae photosynthesis).

Some reactants are able to use specific wavelengths of light more effectively to complete their reactions. For example, chlorophyll is much more efficient at using the red and blue spectrums of light to carry out photosynthesis. Therefore, the action spectrum graph would show spikes above the wavelengths representing the colors red and blue.
Wiki-Action Spectrum

What is also noteworthy is that certain algae such as Black Beard algae have Phycobilisomes which are light harvesting antennae of photosystem II [Chlorophyll synthesis in the Photosynthic Action Spectrum-PAS]

Here is an quote from this article Aquarium Answers; Black Beard Algae:

“This is noteworthy as each phycobiliprotein has a specific absorption and fluorescence emission maximum in the visible range of light. Consequently, their presence and the particular arrangement within the phycobilisomes allow absorption and unidirectional transfer of light energy to chlorophyll a of the photosystem II.
In this way, the cells take advantage of the available wavelengths of light in the 500-650 nm range, which are inaccessible to chlorophyll, and utilize their energy for photosynthesis.
This is particularly advantageous deeper in the water column, where light with longer wavelengths is less transmitted and therefore less available directly to chlorophyll.”

This is just one more reason for optimal light spectrums in our LED Lights instead of the popular shotgun mixing of colors method!!

Photosynthetically Active Radiation– (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis. This spectral region corresponds more or less with the range of light visible to the human eye. New science is exploring more out of this range.
Wiki- Photosynthetically Active Radiation

Blue light– Generally where we see having the proper (and most intense) frequency of energy delivered by Photons for the photosynthetic process (more intense also is better for penetration, also proper for corals evolved to blue light.

plant growth with three different light sources including blue

Typical PAR action spectrum, shown beside absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids

Here’s a fantastic video describing the Nobel Price Prize idea of how we get the most output light energy from a LED input source.

This section will accompany the video to quickly understand how we use useful light for an aquarium application.
Blue LEDs and Nobel Prize – Sixty Symbols

RQE– All energies used by a plant & Zooxanthellae in the full photosynthesis process (when all energies are provided from a full spectrum, such as the Sun) (RQE Mcree 1972)

Energy used by Zooxanthellae’s in the full photosynthesis process.

Full Spectrum of the Sun.

Frequency of different energies carried by Photons

Light Coloration
Amounts of Red, Blue, and Green (all colors from the Visual Spectrum, RBG are primary colors) mixed together create a white appearance to our eye (explained in Kelivn/CRI), just like if you were to mix all plaint colors and get black. These colors mixed can make a quality of energy.

EcoTech Radion
There’s no such thing as a “white” LED.

Colors are combined for a visual appeal, but they’re also combined to create a white, which is the most useful (energy wise & considering visual too). This aspect of light is highly researched right now, with about 1 billion dollars going to the research (as of 2015).

Think of the LED RGB and RQE graphs above

We have some idea of the energies used most efficient in the role of photosynthesis.

What all this research is going to, is if we can figure out what combinations of energies are most efficient in photosynthesis, we can create a more effective white light.

Using specific energies by them self have been proved to be most useful for when an intense amount of energy is needed (blue). Research still has shown there are draw backs (on growth and visually), when using these colors exclusively. This is why a full body spectrum (full body white) is important, along with understanding more intense energy (which we will go into even more).


Measuring Output Energy (High-Lower Usefulness)

Photosynthetic Active Radiation (PAR)-“Photosynthetic Photon Flux (PPF)” & “Relative quantum efficiency (RQE)/Yield Photon Flux (YPF)” Quantum Meters:

By today’s science, we measure energy (light) on spectrum frequency call Electromagnetic Radation (how we get most charts used in this review). With more intense energy waves from the Ultraviolet side and less intense on Infrared side.

Electromagnetic Spectrum
The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The “electromagnetic spectrum” of an object has a different meaning, and is instead the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object.
Electromagnetic Spectrum- Wiki


The best matrix for measuring useable light energy is Photosynthetic Active Radiation (PAR). While this is one of the best matrix for a standard aquarium keeper, it’s still a method, which miss a couple important aspects for plant photosynthesis when considering artificial energy usefulness. This is how we have two understandings of PAR and one can be considered useful.


[Mcree 1972 graph above]

Photosynthetic Photon Flux (PPF)- (µE m-2 s-1 above)
“The most common method of measuring PAR gives equal value to all photons with wavelengths between 400 and 700 nm and is referred to as the photosynthetic photon flux (PPF)…”(ideal quantum response line).

However, photosynthesis is driven by photons with wavelengths below 400 nm and above 700 nm, and photons of different wavelengths induce unequal amounts of photosynthesis…

*Graph showing both PPF and YPF PAR readings

Yield Photon Flux (YPF)-
“Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response…” (Li-COR Senor Line).

“For these reasons, an accurate measurement of PAR should follow the relative quantum efficiency (RQE) curve originally developed by McCree (1972), which weights the photosynthetic value of all photons with wavelengths from 360 to 760 nm. A sensor that responds according to this curve measures yield photon flux (YPF)…”

“The Stark-Einstein Law states that one absorbed photon excites one electron regardless of the photon’s energy between 400 and 700 nm; this law is the basis for weighting photons equally. However, although >90% of blue photons are absorbed, 20% of these photons are absorbed by inactive pigments; their energy is not transferred to energy-collecting pigments (reaction centers) and is lost as heat and fluorescence. This loss means that the quantum yield of absorbed blue photons is typically 20% less than the quantum yield of absorbed red photons. Species differ in their proportion of inactive pigments…”

“genetic and environmental influences on quantum yield…”

“In spite of these genetic and environmental influences on quantum yield, McCree (1972) found that the spectral quantum yield of healthy, green leaves of 22 crop plant species differed by less than ±5%, so he defined an average RQE curve. Inada (1976) obtained a second set of comprehensive quantum yield data (from 33 species) and confirmed McCree’s (1972a) measurements.”

“Quantum sensors designed to measure YPF or PPF are commercially available. Both types use multiple-spectral filters in front of a broad-spectrum radiation detector…but neither type matches its desired curve ”
Accuracy of Quantum Sensors Measuring Yield Photon Flux and Photosynthetic Photon Flux

PAR Quantum Meters (Apogee) available to most hobbyist (budget based) and measure Photosynthetic Photon Flux (PPF), which values all photons from 400 to 700 nm equally, which is the first mismeasure of weighted photons in the range from 360 to 760 nm according to plant photosynthetic response Yield Photon Flux (YPF). PAR Li-COR Quantum Meters are available to hobbyist, but more industrially uses to measure YPF. These meters are more expensive.

Spectrum:

Spectrum of a 6500K AquaRay GroBeam, using ALL Cree 6500K XB-D emitters

All spectrums found on a fixture box will be a rough estimate of the overall energy spectral make-up of all combined emitters. Some fixtures use all the same emitter, so this spectrum is the energy emitted from the one emitter.

Recommended for best emitter make-ups:
TMC Premium HO PUR AquaRay- Salt & Freshwater

MORE useful information would to understand each emitter in the fixture and each output spectral frequencies it produces. If considering each emitter, wattage of each emitter can be used for total output of the fixture.

-The example above is of a 6500K aquarium plant fixture, which happens to use all the same 6500K emitters. So, the spectrum of the emitter will be the same as the overall output of the fixture.

See how their different and what could be considered as useful. We know all energy is useable, so we want to provide it to our plants and corals. Allow them to chose what it wants to use. With a limit input energy, we have to consider our maximum useful output, by using what we know about energy frequencies.

So what do we do with limit (watt/photon) inputs, we focus more (photon) in more efficent energies (remember the Nobel Prize, blue energy talk?), which is really what has allowed us to take huge steps in technology to get the most efficent lighting (T12-T2, now to LED). WHILE trying to provide all energy, which plants and coral find useful in someway.

So, we add our higher energy blue/purple.

AND, we try to get our FULL BODY spectrum, similar to what we know the Sun provides.

Now, this can be done in a million different ways, including, just using one frequency emitter only, OR using separate frequency emitters and adding them all together to get the overall output frequency energy.

Different emitters will have more energy focused in different spectrum frequencies, either blue, more maybe in the middle of PAR.

By taking a look at the spectrum of each emitter, we can get a estimate of how much input energy is going to different output frequencies desired.

Remember the Action Spectrum of Photosynthesis.

Typical PAR action spectrum, shown beside absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids

This too is important to understand where the output spectrum of a fixture (really each emitter), is going to feeding the important processes of photosynthesis. While all frequencies are used (PAR), these frequencies have shown to trigger different growth rates.

By adding the blue, we get more intense output energy to the plant or coral Zooxanthellae, while also providing the useful frequency energy needed in the MAJOR process of photosynthesis.

Why not just provide the same spectrum as the Sun?
When considering a limit energy supply like an artificial light, we cannot just provide the same spectrum as the Sun, as we would actually get less efficant growth, considering what we know about frequencies and PAS/PAR. By using what we know (ultimately adding more blue energy to our spectrum), we are able to use less input energy and get more useful output energy. If we used the Sun spectrum as the only frequencies we provide, we would get growth, even with more input energy, considering we have a limit energy supply.

Kelvin/Color Temperature:

Kelvin
Lights will have Kelvin rating, which is a unit of measure for temperature and is commonly used to describe the type of light one can expect to see from a light fixture and is loosely connected to the light energy in Nanometers.

Aquarium Kelvin

Simply put Kelvin Temperature is basically a measure of color hue and different hues “colors” have been shown to grow plants best for mass or fruit production…etc generically speaking.

Kelvin is the color a black body radiator (such as the Sun), is when it heats up. The Sun highest in the sky, plus blue sky equal 6500 Kelivn. The Sun lower in the sky and later in the seasons, will be warmer at say 3000K. Stars which are hotter or fire, will have a blue appearance, which we might rate at a 12,000K blue Kelivn.
Kelivn- Wiki

Color Temperature
The color temperature (what we see) of a light source is the temperature (Kelvin) of an ideal black-body radiator that radiates light of comparable hue to that of the light source. Color temperature is a characteristic of visible light.

The CIE 1931 x,y chromaticity space, also showing the chromaticities of black-body light sources of various temperatures, and lines of constant correlated color temperature.
Color Temperature- Wiki

6500K white has been shown to have the highest growing power for terrestrial plants. There’s something about this combinations of light, which will gain the most mass in natural outdoor photosynthesis (plants grow more mass in Summer months where the Sun is intense). 6500K is when the Sun is most intense, providing the highest combination of frequencies of usable growing radiation.

*This is a blanket statement for plants in general. What’s best for a plant can vary considerably considering environment and makeup of the plant and what it needs at a given time. Think of seasons and how plants know when to create fruit.

Color Combination Example:
Think of how 1+9=10 as well as 5+5=10, as there are many ways to reach a Kelvin Temperature (like mixing paint) and not all are going to be equal.

You can have a straight 6500K white, but taking say a warm white of 3500K plus a 50K, which is close to 6500K. These two color combinations cannot be the same, even though they both have a 6500K rating.

Again, I can have a 6500K primary made of blue 10,000K and some color from the red end of the spectrum and this will be much different than mostly warm white colors and a high K rated combination to make 6500K. These Kelvin ratings are the same, but the quantity and the quality can be considerably different. This will even be different than the common warm/cool white combination, which also has a 6500K rating.

In this case, the 6500K with more blue will have more usable/quality energy for photosynthesis, based on what we know about the PAR/Action/Absorbent Spectrum and the LED study above.

We’re also finding with along with just blue, it’s a combination of color, which will produce the most mass on a plant. We could say, lets just grow our plants under blue light, but this has shown negative impacts on plants, which is why full spectrum are recommended, at least for plant growth.
Green light: Is it important for plant growth?

How much of these combinations is the billion dollar question. This is the term I would like to coin as Synergy. The Synergy of output frequencies we get from a fixture, is what can become more useful in different applications.

Similar can be explained for photon demanding reef marine aquariums, which require energy to deliver photons in the near ultraviolet light range.

Using this same example and assuming 1 and 9 are nanometer wave lengths, which are desirable, and 5 is not, the light using the 5’s are poor even though they achieve the same Kelvin rating!

The latest technology LED lights are very fine tuned in exacting wavelengths/nanometer energy outputs found within the best Kelvin Color temperatures.

Achieving the correct wavelengths in the correct amounts has been the challenge and is why a simple LED flashlight has about as much in common to an advanced aquarium LED as paper glider to a Boeing 777 airplane. Try hanging several LED flashlights to grow your delicate coral or plants, it will not work the best!.

The best reef tank emitters:
AquaBeam/AquaGro Patented LEDs


RGB
Another popular trend is LED fixtures, which allow the user to control color temperatures. These RGB and Capacitive Touch features are popular “bells and whistles” that unfortunately many without a full understanding of lighting PUR fall for.
Controlling your RGB (Red, Green, Blue) of your light has little bearing on obtaining the exacting nanometer spikes necessary for photosynthetic life.

In fact the best emitters are designed to run at a specific color whether it is a XT-E cool white or XT-E 10,000K, and attempting to alter the color simply degrades the PUR.

Other RGB features utilize green, red, yellow, and other color emitters, but again, by attempting to dial in say a 6500K or 18000K Kelvin temperature, all that’s being done is wasting copious amounts of energy in light spectrums, which provide little PUR for photosynthetic life!

These features, while nice for us are stressful to plants and coral, plus can encourage algae growth. If maintenance of an aquarium is off, the colors from these RGB, will be the first aspect to cause algae in an aquarium.


Watts Per Gallon?

This is basically an “out of date” equation when used to cross compare lighting types, however we still can use it when comparing same lighting types.

In other words, the newest generation LED emitters such as the patented CREE emitters would only require about .6 watt per gallon for high light planted aquariums and .8 watt per gallon for most reef tanks. About .2 watt per gallon can be added to either (FW or Reef) for even more light or more depth over 24 inches.

However this does not apply to the many lower end LEDs now flooding the market such as the “New Fluval LED Lights” which provide little specifications other than CRI, which is not a parameter, which should be used to rate any aquarium lights. These would be more like 1.5-2 watts.
Citation: Aquarium Lighting; CRI


O-10v vs. Pulse Width Modulation:

What is missed by many “lesser” knock off LEDs, is the drivers/circuitry used to power each emitter. Like daisy chaining Christmas lights together; one simply daisy chains an LED emitter without changing voltage to each emitter in the chain. It’s this circuitry, which separates 80% of LED fixtures from the 20%, which have the proper circuitry and thus are more expensive drivers to maintain exacting voltages between each emitter.

Emitters are meant to be ran at a certain voltage to maintain their spectral quality.

Without the proper divers, if dimmed the emitters will have an increase of current applied to them, which is stress on the emitter. Over time, especially when moisture is involved, this stress can lead to degradation of the emitter and it will burn out. With even one emitter burnt out, this can cause shifting of the lighting spectrum. This is how it’s explained by a electric engineer.

The shift of a LED lighting spectrum can be seen by using an incandescent bulb as an example.

This applies to both LEDs intended for Reef and Planted aquariums and by theory, can be different depending on how many emitters are chained together. Say 10 versus 300.

Here is a helpful video visually demonstrating color shifts in dimming:
Incandesccent DimmingIncandescent dimming- cooler blue to warmer yellow color.

This concept applies to controllers, which dim and brighten an LED. A controller best maintains the voltage output via pulse width modulation [PWM]. This applies to fixtures, which have a dimmable driver in the unit and allows it to use this controllers using PWM. Only a few brands offer this technology and can also be incorporate in DIY set-ups easily and at a decent price.

Fixtures with PWM divers, cannot be dimmed with standard 0-10v dimmers, such as Apex.

PWM is important as it’s effectively turning the LEDs on and off very quickly (faster than the eye can see) so there’s no change to the voltage/current output as opposed to using 0-10v linear or analog reduction (aka current reduction)/manual intensity controls used by many brands of LEDs.

This technology also will lower the watts to be used in LED fixtures proportionate to the voltage used, which will in the end save in operation costs. 10V dimming will always used 10 volts, where PWM is proportionate, so dimming at 5 volts will use 5 volts of energy.

From: http://en.wikipedia.org/wiki/Pulse-width_modulation
“The main advantage of PWM is that power loss in the switching devices is very low. When a switch is off there is practically no current, and when it is on, there is almost no voltage drop across the switch. Power loss, being the product of voltage and current, is thus in both cases close to zero. PWM also works well with digital controls, which, because of their on/off nature, can easily set the needed duty cycle.”

See also this video explaining PWM, which I can almost guarantee if your LED fixture uses a cooling fan is NOT USING PWM!!

YouTube Video Circuit Skills: PWM [Pulse Width Modulation]

 

HOWEVER this technology is not cheap! Up front. Compared to the lesser brands on the market, the cost might be $100-$200 more. But, the idea is to save more power for savings down the road. Also to preserve the life of the LEDs, which is also applied to savings of not having the replacement emitters/fixtures.

It been noted, PWM makes a pitch noise while dimming. Looking for some information from the manufacturer about this claim, TMC does note that the sound is present, but they also state that in many test with many users, the sound can hardly be noticed. 90% claimed there was no issue with the sound. The sound is proportionate to the ramp, so at less %, the sound is lighter and 99% would be the loudest. Even still at 99%, the sound is hard to hear and is something that easily blends into the natural sounds of the aquarium. At 0 and 100% there’s no sound heard.


Unfortunately, the vast majority of LED fixtures utilize 0-10v current reduction (manual controlled rheostat), which can alter the light spectrum and also produces much more excess heat due to how “current reduction” (Voltage/Current relationship) works. As well, while some Chinese LEDs are now being supplied with PWM, these utilize a basic form similar to how an electronic DC to AC Inverter can use square wave, modified sine wave, or pure since wave; with pure sine wave being best and most efficient and square wave being poor and inefficient.

This is also why so many high wattage output LED fixtures require a fan. As the heat created by the amount of emitters (including excessive heat from dimming) on the heat sink is more than the sink can handle. This includes both low end LEDs or even many of the “better” more popular brands.

What’s also worthy to note is this wasted heat then requires a cooling fan, which represents more wasted energy, which could have gone into lighting output your aquarium. Wasted energy converts to heat… This is why ANY aquarium LED utilizing “linear or analog reduction”, which is the vast majority, requires a higher wattage and more emitters to provide the same useful amount of light energy/PUR so as to provide the same results as an aquarium LED that utilizes PWM and drivers!!! Lesser fixtures can waste up to 50% of it’s energy used in a combination of extra parts (fans) requiring energy, wasted heat, and poor spectral quality/quantity.

So the long term energy costs with any LED, which uses extra parts, poor circuitry/current reduction (MOST), is going to be considerably higher, often paying for the PWM tech. in most cases under a year!!

Sum it up:
While Current Reduction and PWM both have their own pros and cons, from the aspect of a quality LED fixture, the lack of PWM, along with daisy chaining of circuitry is just one MAJOR reason NOT to consider ANY LED, which uses dozens of emitters to provide the amount of desired light.

In fact, even an emitter from a “newer” bin such as Cree XTE, which is simply daisy chained together, will lose emitter spectral quality too if they are just used in current reduction or manually dimmed. Versus the same Cree emitter, which has the correct constant current drivers to tie each and every emitter together.

Examples of these current reduction fixtures include the Blue Moon, TaoTronics, SkyLED, Marine Skkye, Fluval, Ocean Revive, Build My LED among MANY others.

  • Emitter Combinations Vs. Specimen Placement

Specimen placement is a major determining factor for which emitters to use, in fact this is more important than the actual tank depth if for example all the high light requiring specimens are placed at 12 inches or higher in a 30 inch deep tank.

As a generalization, the use of more blue and/or higher Kelvin daylight is necessary for specimens, which are deeper in the water column (such as 14000K daylight for depths past 12 inches). Another consideration is whether the emitter is wide angle or more focused, as this can determine which emitter combination is best based on specimen placement.

Maxima ClamFor instance a Maxima Clam that is placed on the bottom of a 24 inch deep tank will likely do best with more Reef Blue emitters (50,000K @ 465-485nm) in the emitter mix, or even supplemental 20,000K Metal Halide.

Or better, I would suggest placing the Maxima Clams on shelves higher up on your “live rock” reef. (To keep your Clam off the bottom away from bristle worms, etc. as well as provide better lighting to your clams) Depending upon how far under the surface you place these and other photosynthetically sensitive inhabitants will allow for more wide angle LEDs such as the 1500 Ultima Ocean Blue.

Coral such as an Acropora coral placed on your tank “reef” at 6 inches under the surface may do well with lower daylight emitters, which still have a high output and light spread.

With freshwater plants, this also holds true, so if a tank is well terraced, standard 6500 daylight emitters should be fine for most plants up to 20 inches, however adding higher Kelvin daylight, such as the Marine White 14000K might be suggested for tanks deeper than 24 inches.


Fixture Construction

Another key to quality is the build of the fixture. With cheaper cost, comes cheaper fixtures, fans easily damaged by moisture, emitters, etc.
What’s typically not thought about is that these LED sit over a body of water. Basically, a computer is being put over water. These are high humidity environments and whether it’s two months or two years, most all fixtures will be effected by the humidity. Moisture will build up in the unit and will effect how the voltage is transmitted to each emitter.

Best suggestion it to get an LED, which is designed to be put over water. Most all are not. They will light the aquarium well with great color, but it’s not designed to sit in a moist environment long term. It’s recommended to use fixtures, which have the highest water resistances rating possible for aquarium. Water proof is best. TMC AquaRay has a IP67 rating, which is the highest rating of LEDs designed for aquarium use.

Fans are can be a clue into build as well. Fans are having to get wasted energy away from the fixture often due to design of circuitry that produces more heat, including the failure to use PWM for controlling the fixture.
If the fixture gets wet anyway, which happens more than people think, the unit is done. The fan will also be one of the first pieces of the fixture to break and the fixture cannot operate without a fan.

The other issue with a fan, is this requires input energy that is not going to lighting and also an indicator of higher energy being produced as heat and again not light, thus requiring a fan.
This is often missed by persons in their apples to oranges comparisons such as the example I used before of the AI Hydra HD LEDs and the AquaRay. Both are excellent and I know of good results by pros with both. However the fact remains that while the AI Hydra may produce more light per square centimeter than the AquaRay, the AquaRay is also much more efficient, not requiring a cooling fan and along with the slightly better PUR, is a vastly more efficient LED per watt of input energy than the Hydra (or ANY other LED for that matter).

See the SUMMARY for more!

Waterproof LEDs:
IP67 Waterproof LEDs


Warranties

The warranties of fixtures will be the clearest picture of the quality of build for all parts used in a fixture. Most will have very limited six month limited warranties. It might be stretched to a year, where the fixture still has to sent back for a repair.
It’s recommended to get the longest warranty, as just having to replace one fixture outside of a warranty will end up costing much more than just purchasing a fixture what would have had a longer guarantee.

TMC AquaRay has the longest warranty on the market of 5 years. The next closest is 2 years. Plus they do full replacements of fixtures, even to new generations, no mater what the defect is. So will have a decent warranty, but a certain precent of emitters have to be out. If one emitter goes out, the spectrum of the whole fixture can be thrown off, without the user know.

See these links:
Aquarium Opinions; LED Warranties

AAP/TMC Premium Aquarium LED Lights; Longest warranty, best build

Here is an excellent video that shows the prospective aquarium LED light owner what they get as per waterproofing with the better LED fixtures over the common Finnex, Ocean Revive, etc. and others:

The Great LED Test- How to know the best

Further LED Fixture Emitter Information, Myths:

  • Correct Wave Lengths:

As earlier noted, it is important to understand that not all emitters are equal, even the Cree or other binned emitters sold commonly for other applications are only as good as their correct wavelength output.

This is where there’s much misunderstanding as to emitter abilities based on emails friends and I in the aquarium hobby/industry have received.

Many think that high end patented emitters are equal to emitters sold for DIY projects or the many LED fixtures readily available in stores or the Internet which is simply 100% incorrect!

In another example, the nanometer range in the licensed-patented “emitter bins” used in the CRee XR-E for their blue are very specific, utilizing the maximum PAR range of 465-485nm found in the blue spectrum (400-500nm), unlike other lights and even other LEDs which either have multiple spikes.
Others such as the CRee XT-E peak at 420nm.

By peaking at these important spikes, maximum PAR needed by zooxanthellae photopigments in many corals is achieved.
Reference: Useful Light Energy for Photosynthetic Life

For instance, Cree Emitters used by Tropic Marine Center AquaRay/AquaBeam should not be confused with “off the shelf” Cree emitters sold for other lighting applications, as these do not produce the optimum PAS [Photosynthetic Action Spectrum] or PUR of Light required for delicate marine reef and freshwater inhabitants and plants. There are emitters that are designed specially for plant and reef use.

Assuming a Cree emitter is used, as noted elsewhere even within specific bins, many are sold under exclusive license such a specific binned emitter that is normally a cool white but is altered under license to be a daylight 6500K.
You also have the patented Osram Oslon NP Blue emitter that is ONLY sold under exclusive contract!

TMC AquaBeam Ultra 1000 Reef White over marine aquarium
Those who use the logic as I read on a forum post about wattage such as this: maybe a nice fixture, but its way to small and you would need 12 of them” [30 watt TMC Reef White] to light my 120g” totally misses the PAS/PUR high output concept of a modern LED fixture and is still using the logic that is similar to placing twelve 40 watt cool or warm white T12 fluorescent tubes over a his/her aquarium!!

(The Marine Aquarium to the above/left is pictured with 2012 TMC Reef White 1000 tiles & 500 Strips)

Also be careful of over hyped LEDs, with high PAR values, which are not required, which will require a dimmer, or there will be serious issues to the plants to corals.

The EcoTech Radion & Aqua Illumination are awesome LEDs with high light output per square centimeter that are nicely made and presented, notwithstanding these are also good examples where lighting facts are covered by “flash” and good marketing in my opinion.

While their proprietary 40 and 70 degree lenses and feature rich controllers may be useful, this does not change the fact these use a mixture of binned emitters that in the end are less efficient [lower PUR] along with wasted energy as heat!

Again, this is NOT to say the EcoTech and Aqua Illuminations are not Reef capable, as use by many reef keepers proves these are capable and in fact sometimes the better choice for certain lighting applications, only that these LED Lights require a higher wattage input to product the same amount of useful light energy as those using proprietary/patented emitters [along with other lower efficiencies].

Please reference this article for further information:
PAS-PUR vs PAR, Wave Lengths in Aquarium Lighting

  • DIY LED Fixtures:

This may well be a worth while endeavor (if only for the enjoyment of building your own equipment).

Many have had reasonable success with over the counter CRee emitters as well as Bridgelux emitters.
Even the over the counter CRee emitters are still more capable than the Bridgelux, however with a shotgun approach of Bridgelux emitters many have still successfully kept reef aquariums with these DIY Bridgelux LED emitters [resulting though in much more electrical usage, which defeats the purpose of using LEDs].
Citation: http://www.marsh-reef.org/do-yourself/32703-bridgelux-vs-cree-led.html.

Please note all that has been stated here as per emitters and realize that to achieve good results you will need good drivers/ballasts to power the emitters (many prefer magnetic even though they run hotter and use more energy), and as per the emitters themselves you need to follow more of a shotgun approach, since the best emitters are not sold over the counter.

Think of it this way– if you as a automotive ignition system seller have developed (at considerable cost) a new automotive ignition system that increases fuel mileage by 50%, you would want to sell this at the highest possible price with the most up front money to recover development costs.

The bottom line is a successful DIY LED reef light is a reasonable goal, but you WILL use vastly more energy for the same results when you compare DIY Bridgelux LED fixture to a patented emitter LED fixture.

You’ll also need a strong understanding in wire, lighting, and maintenance. Of course, there will be a lack of a manufactures warranty as well, so repairs are done by the fixture owner.

I also highly suggest adding PWM dimmable drivers for DIY, which is actually a decent price for DIY for the benefits it has. These drivers will run under $10 per channel. It’s recommended to be able to dim these LEDs, starting slow and working up to their tanks lighting needs.


Basic Mounting Suggestion

Each LED generally come with at least one form of mounting. Slide out rails, suspension kits, and in hood mounts are most common.

DIY options are east and work for most fixtures.

In fact a DIY rack such as the one featured in this picture does not take much DIY ability at all and easily supports most LED Fixtures.

Depending on how much PAR is being used and even lens used on the fixture, will determine how high the LED need to be mounted.

11219018_1153628604650564_4961501779533405658_n

See this related Aquarium Article Digest Post for further installation options/ideas:
Aquarium LED Light Installation Options

As well I strongly suggest reading this section: Important LED Ventilation


T5 to LED Comparison

This example uses the more efficient AquaRay line, some of the super high output per square centimeter lights such as the Aqua Illumination Hydra HD LEDs are going to cost more to operate, but are still often less expensive per input wattage of energy.

*(2) 18 Watt T-5 Dual Fixture = $60
*(2) 18 Watt T-5 Bulb = $30
(it takes two T5 to equal one AquaBeam 600 12 watt in actual useful light energy)

*Startup cost for Fixture and bulb = $90

*Average yearly electrical cost = $15.77
*Yearly Bulb replacement cost = $30

Total T5 cost for 5 years = $318.85

* TMC Led Fixture = $150

*Startup cost for LED = $150

*Average yearly electrical cost = $5.26

*Total TMC AquaRay LED cost for 5 years = $176.28

Proper High End Electronic LED Venting, Moisture Prevention

Important LED Ventilation

Please read the above article section about the importance proper care and mountain of your LED Fixture Investment


*LED Bias:

I try and keep this article as factual as possible, including many references, which includes some from those I have deep respect for their expertise and history in the hobby/industry. As my readers will note that I cannot help but have biases based on this research and mentoring from others.
Likely, over time my biases will change as they have in the past, since LED lighting is a fast developing and changing aspect of aquarium keeping [I know my mentor has changed his recommendations for lighting many times over his decades in the industry]. Especially among those keeping reef or high tech planted aquariums.

From brand patents/exclusive license agreements, PWM drivers, input/output energy, and more, the science speaks for itself!! The repeated experiences back up the science! Lighting and aquariums ARE science, albeit with art and personal preferences mixed in!
Unfortunately many of the newest offerings [as of 2016] are going after the price point producing planted or reef capable lights, but much lower efficiency using a shotgun approach and less natural light, as well builds that are not going to last long in our aquatic environments [example Finnex].
The other popular approach of late for higher end LEDs is instead of pursuing the best known science, these lights are loaded with bells & whistles and still often hove poor water proof rating ratings [& warranties to match].

I try and mix simplified science for easy reading along with a lot of practical experience in this article. I cite many other related articles to back up the science and these include articles, which are trusted. Also backed by experienced individuals, which I know as well.

Very limited research in this areas of lighting is being done in regards to aquarium applications. Much of this work is referring to other horticulture as a reference.
So if we can figure how to get more usefulness of a light source, we can learn how much is minimally needed, which will allow us to be more efficiently.


*LED Summary;

Any flaws of LED aquarium lights are quickly disappearing and based on the energy savings in electricity in wattage of the lights [as compared to MH] as well as electricity use for air conditioning or the cost of a chiller often necessitated by larger Metal Halides.
I should also note that LED light technology is growing by “leaps and bounds”, even the low end lights such as the Finnex are still much better than previous entry models [although warranties & fixture longevity are still poor for these entry models].


LED Lights such as the The AquaRay LEDs in particular along with the Orpek, Aqua Illuminations, Zetlight/iLumenAir and a small handful of other LEDs are constantly improving.
In come cases, I think we might be hitting the wall of how much more we can improve an LED without causing other side issues such as too much heat and consuming energy in large volumes as was the case with Metal Halide lights.

So just make sure you get your LED comparisons correct let me sum it up:

  1. If you want a cheap fixture as per up-front costs, often with multiple color combinations, the Finnex, Fluval, Current USA Satellite, Ocean Revive, TaoTronics and others might be your LED. However do not expect a long life and certainly do not expect a LED that is efficient as far as how much wattage of input energy is needed for a given useful energy of light.
  2. If high intensity power per square centimeter (along with some great bells & whistles which include the ability to change color spectrums), the AI Hydra HDs are your LED (IMO more so than the similar EcoTech or the Kessil IMO based on their HD feature).
  3. If easy to use bells & whistles including ability to change color spectrums, easy mounting (iLumenAir), along with strong light energy per square centimeter, then maybe the ZetLight/iLumenAir or possibly the Ocean Revive/Evergrow LED is for you.
  4. If a state of the art, high efficiency, high PUR with the most natural color spectrums available in an aquarium LED, and a well constructed LED with a warranty 2.5 to 10 times that of other LEDs is what you desire, the AquaRay is the clear choice!!

Product Resources:
#High Efficiency/Best Build AquaRay LED Lights, since 2007
#Aqua Illumination Hydra HD Highest Output LED
#Zetlight/iLumenAir Full Featured LED

Further Reading:
Aquarium Opinions; LED Warranties

The bottom line is, when you compare an LED aquarium light to the many popular fluorescents & CFLs in terms of lumens per watt, focused lumens, lower wasted light energy, low heat output, energy consumption and long life for those with the IP67 water proof ratings [50,000 hours vs. 8000 hours], the modern premium LED is generally a better light.

In long term cost since [as an example] a 12 Watt Aqua Ray GroBeam [natural Daylight] can easily replace a 55 Watt power compact, such as a Helio, when you compare ALL aspects of lighting as presented in this article [approximately 20-25% of high efficiency LED wattage is required when compared to a typical HO G11 CFL].

In terms of efficiency, when compared to even older T8/T12 aquarium lights, a third generation high efficiency TMC Aqua Ray requires only 17% (or less) of the wattage for the required light energy of a planted or reef aquarium.

SOME EXAMPLES:

TMC GroBeam and Colour Plus 1500 over high tech planted aquariumLED Light systems are easily complimented with T5 fixtures or SHO lamps/lights (the SHO are a bit more DIY in applications, but if handy, they are often worth the extra time, especially for heavily planted freshwater aquariums).

See these links:
AquaRay GroBeam/Colour Plus Premium LED Fixtures
SHO self-ballasted high output CFL

The picture to the above/right is a very high tech planted aquarium using the EI method of dosing and also employing two Premium GroBeam 1500 and one Colour Plus 1500 LED fixtures for phenomenal growth (click to enlarge)

Another less known example are the small tiles useful for larger tank supplementation or Nano reef or planted aquariums.
The TMC Mini 500 & 400 LED are both designed for small Nano Reef Tanks under 15-20 gallons or supplementation of larger tiles or fixtures..

The picture to the left displays this light with a “MountaRay” bracket for easy attachment to small tanks.

This Mini 500 LED includes four lensed CRee patented-licensed XP-E 10,000K and one unlensed Blue CRee XP-E (the White LEDs can be switched off for “moonlight” mode).
Similar is the TMC Mini-400 for nano freshwater planted or refugium tanks.

See this review of the 400 (from Aquarist Magazine):
TMC Aquaray Mini LED 400 Aquarium Light Tile Review

See this Product Source for the Mini 400 & 500:
AquaRay LED Lights; Mini 400 & 500

For additional information, please see this full Aquarium Lighting Article from which this Digest article has been allowed to quote some information from:

Aquarium Lighting; Facts & Information

Also see this newer article for LED Installation Ideas:
Aquarium LED Light Installation Options


LED NEWS OF NOTE (Development Questions answered):

*XLamp XT-E White:
From Cree
(http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-xte-white):
“Cree XLamp XT-E White LEDs are the highest-performance white LEDs available. The XT-E LED delivers twice the lumens-per-dollar of previously available LEDs in the popular XP footprint. By leveraging the popular XP footprint, customers can easily incorporate the XT-E LED into existing XP LED designs to shorten design cycle and improve time to market.”

*XLamp XB-D White:
From Cree
(http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-xbd):
“Smallest lighting-class LED enables dramatically lower system cost

Designed to enable lower system costs for lighting manufacturers, the XLamp XB-D LED doubles the lumens per dollar of previously available LEDs. Built on Cree’s SC³ Technology™ Platform, the XB-D White LED delivers up to 139 lumens and 136 lumens per watt in cool white (6000 K) or up to 107 lumens and 105 lumens per watt in warm white (3000 K), both at 350 mA and 85°C.

Cree XLamp XB-D color LEDs extend the double lumens-per-dollar performance of the XB package to color LEDs, delivering up to 40% higher maximum light output than XP-E color LEDs. The combination of performance and small size of XB-D color LEDs enable better color mixing and lower system cost.”


REFERENCES/CITATIONS:

*Aquarium Lighting Facts & Information

*PUR/PAS vs PAR in Aquarium Lighting; Including Spectrographs

*Cree Overview

*http://www.wetwebmedia.com/LEDManufF.htm
Such as this quote with further verification of our comments about the EXCLUSIVE Cree/TMC emitter rights:
“TMC, in tandem with Cree, tailored the newest Cree XR-E diode Kelvin temperature so as not too waste energy in the unneeded spectrum range. And, the TMC tiles do not use cooling fans”

*St Mary’s Marine Biology Experiments
A few Articles within this website I recommend
   *A Push for Excellence
   *The man behind the study
   *And, so it Begins. How to Mount?
   *Experiment Update 1
   *Sustainable Science Thesis & Abstract Update
   *TMC AquaRay Vs. Build My LED

*Visible and Ultraviolet Spectroscopy

*Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures
[A good read, albeit aimed more at growing terrestrial plants than practical LED application in planted and especially reef aquariums. The comparison between HPS & LEDs misses what corals and even plants that live in water need as per PAS. Practical experience long before LEDs were even available for reef use shows their comparison to be false as noted by another source I cite that also cites this otherwise useful resource].

*Advanced Aquarist; The Best Lamp Is
[I do not totally agree with the methodology and conclusions [rather flawed in that much is left out], but still an educational read]

*Input from several aquarium professionals including: Aquarium Design, and Quality Marine USA (the largest importer of marine fish in North America)

*Red Slime Algae; Cyanobacteria in Aquariums
I should note that if you also have a UV Sterilizer, changing the UV Bulbs every six months can help with Red Slime control along with the more important aspect of good lighting with little of the yellow light bands.

PLEASE NOTE;
So as to keep this already long article readable; NO Further Comments will be allowed; Thanks for understanding

OTHER USEFUL/INTERESTING WEB SITES:

Excellent professional and experienced information about Reverse Osmosis (RO/DI) systems (A MUST READ!):
Use of RO, DI, Softwater in Aquariums

Another excellent professional and experienced article about Reef (or Marine Fish) Aquarium Maintenance (ALSO A MUST READ!):
Reef Aquarium Chemistry Maintenance

Recommended Replacement UVC Lamps:
High Output UV Replacement Bulbs-Lamps
Such as: 8 Watt UV Bulb; 2 pin T5
& 9 Watt UV Bulb

Recommended source for UV Sterilizers:
Aquarium-Pond UV Sterilizers

Aquarium Silicone

Aquarium Medications; How They Work

Aquarium Fluidised Sand Bed Filters

Copyright 2016, By Steve Allen